1. What Does This Program Do? (BASIC)

When the following program is run, how many different values does variable A take on? The initial values of both A and C is 15.

```
for B = 10 to 15 step 2
    if A < B then A = B else C = A - 2
    if B < C then C = B else A = 2*B - C
next B
```

2. Computer Number Systems

Convert 1994 from hex to octal.

3. Computer Number Systems

What is the minimum number of bits that are needed to represent the numbers 0 through 4, 194, 303 (1024 * 1024 * 4 - 1) in binary? For example, 4 bits are needed to represent the numbers 0 through 12 in binary.

4. Recursive Functions

Evaluate $f(10, 6)$ where

$$f(x, y) = \begin{cases}
 f(x-1, y) & \text{if } x > 7 \\
 f(y-2, x) + 4 & \text{if } 1 \leq x \leq 7 \\
 -10 & \text{otherwise}
\end{cases}$$

5. Recursive Functions

Suppose that $f(3) = 16$ where

$$f(x) = \begin{cases}
 f(x-2) + 3f(x-1) - 5 & \text{if } x > 0 \\
 k & \text{if } x \leq 0
\end{cases}$$

Find all valid integer values of k.
1. The values that \(A \) takes on are (in order) 15, 7, 12, 11, and 14. The following table gives the values of \(A \) and \(C \) after the if statement each time through the loop:

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
<td>13</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

2. An easy way to convert between hexadecimal and octal is to go through the binary representation. The strategy is to write \(1994_{16} \) in binary:

\[
0001 1001 1001 0100
\]

regroup the bits into groups of 3, starting at the right:

\[
0 001 100 110 010 100
\]

and finally, convert each group into an octal digit:

\[
14624
\]

3. In general, \(n \) bits specify \(2^n \) different values. The numbers 0 through 4,194,303 contain 4,194,304 different values, and

\[
4,194,304 = 1024 \cdot 1024 \cdot 4 = 2^{10} \cdot 2^{10} \cdot 2^2 = 2^{22},
\]

so 22 bits are needed.

4. The evaluation is as follows:

\[
\begin{align*}
f(10, 6) &= f(9, 6) = f(8, 6) = f(7, 6) \\
f(7, 6) &= f(4, 7) + 4 \\
f(4, 7) &= f(5, 4) + 4 \\
f(5, 4) &= f(2, 5) + 4 \\
f(2, 5) &= f(3, 2) + 4 \\
f(3, 2) &= f(0, 3) + 4 \\
f(0, 3) &= -10
\end{align*}
\]

Back-substituting is straightforward.

5. Let’s evaluate \(f(3) \) as a function of \(k \):

\[
\begin{align*}
f(3) &= f(1) + 3f(2) - 5 \\
f(2) &= f(0) + 3f(1) - 5 = k + 3f(1) - 5 \\
f(1) &= f(-1) + 3f(0) - 5 = k + 3k - 5 = 4k - 5 \\
f(2) &= \ldots = k + 3(4k - 5) - 5 = 13k - 20 \\
f(3) &= \ldots = (4k - 5) + 3(13k - 20) - 5 = 43k - 70
\end{align*}
\]

We can now solve for \(k \), since we know that

\[
f(3) = 43k - 70 = 16.
\]
1. What Does This Program Do? (BASIC)
 After the following program is run, what is the value of c$?

```basic
  x$ = "abcdefghijklmnoprstuvwxyz"
  for x = 1 to 10
    a$ = mid$(x$, 20-2*x+3, 3)
    b$ = b$ + left$(right$(a$,3),2)
  next x
  c$ = mid$(b$, 10, 2)
```

2. Boolean Algebra
 Suppose that A and C were guaranteed to have the same value. That is, either both are true or both are false. With that assumption, simplify the following expression as much as possible.

 \[
 (A + BC)(A(BC))
 \]

3. Boolean Algebra
 List all ordered triples that make the following expression false.

 \[
 (A + B)C \oplus BC \oplus A + C
 \]

4. Bit String Flicking
 Evaluate the following expression:

 \[
 (\text{LCIRC-2} ((\text{RCIRC-2} 10111) \text{ AND } (\text{LSHIFT-2} 00011)))
 \]

5. Bit String Flicking
 Find all values of x, a 5-bit long string, that make the following equation true:

 \[
 (\text{RSHIFT-1} (\text{LCIRC-3} (\text{NOT} \ x))) = (\text{RCIRC-2} (\text{LSHIFT-3} 11010))
 \]
1. After the loop finishes, the value of b is uvstqropmnkljghfcd.
The variable c is set to the 10th and 11th character of b.

2. Ignoring the assumption, the expression simplifies as follows:

\[
\frac{(A + BC)(\overline{A}BC)}{(A + BC) + (A\overline{BC})} = (A + BC) + (\overline{A}\overline{BC}) \\
= (A \cdot BC) + ABC \\
= B \overline{AC} + AC \\
= B(\overline{A} + C)
\]

When A and C are the same, \(A \oplus C \) is false, and \(\overline{A} \oplus C \) is always true. Thus, the expression becomes simply \(B \).

3. First, consider the expression \(x \oplus y \oplus z \). This is false when an even number of inputs are true. (Take a moment and convince yourself of this fact.) The truth table below shows the values of each argument to the XOR operator in the original expression; the last column counts the number of arguments that are true.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>((A + B)C)</th>
<th>(BC)</th>
<th>(\overline{A} + C)</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\((0,0,0), (0,1,0), and (1,0,1)\)

4. The evaluation is as follows:

\[
(LCIRC-2 ((RCIRC-2 10111) AND (LSHIFT-2 00011))) \\
= (LCIRC-2 (11101 AND 01100)) \\
= (LCIRC-2 01100) \\
= 10001
\]

5. The right side evaluates to 00100. Now, express \(x \) as \(abcde \) and the NOT of each bit as the capitalized letter, and simplify the left side:

\[
(RSHIFT-1 (LCIRC-3 (NOT abcde))) \\
(RSHIFT-1 (LCIRC-3 ABCDE)) \\
(RSHIFT-1 DEABC)
\]

11010 and 11110

Now, by examining each bit in the two sides, we see that \(D=0, E=1, A=0, \) and \(B=0 \). Equivalently, we have \(d=1, e=0, a=1, \) and \(b=1 \). Bit \(c \) can take on any value.
1. What Does This Program Do? (Pascal)
When procedure whome is called, what is the value of variable \(y \) just before the procedure returns?

```pascal
procedure whome;
    var x, y, z: integer;
    begin
        y := 0; x := 10;
        repeat
            x := x-1; y := y+1; z := 8;
            while (z>5) and (x>=z) do
                begin z := z-1; y := y+1 end
        until x=4
    end;
```

![Diagram](image)

<table>
<thead>
<tr>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Box)</td>
</tr>
</tbody>
</table>

2. Regular Expressions and FSAs
If a string generated by the regular expression below contains 6 c’s and 15 a’s, how many b’s are in that string?

\(((ab)ac)^*\)

3. Regular Expressions and FSAs
What is the length of the shortest string containing at least one E that is accepted by the following FSA?

![Diagram](image)

4. Digital Electronics
Suppose that you had only OR, AND, and NOT gates, and that each one costs 5 cents. What is the cost of the cheapest circuit you could build that is true for the exact same inputs as the following circuit?

![Diagram](image)

5. Digital Electronics
Find all inputs that make the following circuit false.

![Diagram](image)
1. This program consists of a while loop within a repeat-until loop. The repeat-until loop is controlled by the variable \(x \), and \(x \) starts at 10 and is decremented once each time through the loop. Thus, the while loop is executed 6 times, with \(x = 9 \) down to 4. When \(x = 9 \) and 8, the body of the while loop does not execute at all.

\[y = 12 \]

2. The strings generated by the regular expression have the property that every \(a \) is followed by either a \(b \) or a \(c \). Moreover, every \(b \) and \(c \) is preceded by exactly one \(a \). Thus, if there are a total of 15 \(a \)'s, and 6 \(c \)'s, this means that 6 of the \(a \)'s are preceded by a \(c \), and the other 9 \(a \)'s must be preceded by a \(b \).

\[9 \]

3. There are two such strings: \textbf{BEDA} and \textbf{BDEC}.

\[4 \]

4. The circuit is represented by the Boolean expression

\[((AB) + C) \bar{A} \]

This simplifies as follows:

\[(AB + C)\bar{A} = AB\bar{A} + C\bar{A} = CA \]

This circuit costs 10 cents to realize: 5 cents for the NOT (of \(A \)) and another 5 cents for the AND (of \(A \) and \(C \)).

\[10 \text{ cents} \]

5. The circuit is represented by the rather complicated Boolean expression

\[A((AB)(BC)) C \]

When this is false, the following is true:

\[A((AB)(BC)) C \]

Clearly, \(C = 1 \) and \(A = 1 \). Substitute and simplify as follows:

\[(1((1B)(\bar{B}))1) = (B)(B) = \bar{u} = 1 \]

Thus, it doesn’t matter what value \(B \) has.
1. What Does This Program Do? (Pascal)
 When the following program is run, what are the final values of \(x \) and \(y \) after the second call to `senior` returns?

   ```pascal
   program foo;
   var x, y: integer;
   procedure senior(var a: integer; b: integer);
   begin
     a := b - a;
     b := b + 2*a;
   end;
   begin
     x := 5; y := 8;
     senior(x, y);
     senior(y, x);
   end.
   ```

 \(x = \boxed{___} \)
 \(y = \boxed{___} \)

2. Prefix/Infix/Postfix Notation
 Evaluate the following postfix expression when \(A=8, B=6, C=7, \) and \(D=2 \).

 \[A B + C / A D * * B + \]

3. Prefix/Infix/Postfix Notation
 For this problem, we define two new binary operators.
 \# is the least common multiple and \% is the greatest common factor.
 For example, \((4 \# 6) \% 8\) has a value of 4, since \(4 \# 6\) is 12 and \(12 \% 8\) is 4.
 Evaluate the following prefix expression.

 \[# \% # 2 3 # 4 5 # \% 8 12 \% 6 3 \]

4. Data Structures
 Consider the following sequence of operations on an empty stack:

 \[H O + U S + O + N + + T X + \]

 A plus sign indicates a pop operation, and a letter indicates a push operation of that letter. What would be the next item to be popped?

5. Data Structures
 Insert the letters `S A L T I A K E C I T Y` into an initially empty binary search tree, starting with the `S` and ending with the `Y`. How many internal nodes have 1 child?
1. There are two tricky parts to this question: One, the first argument to `senior` is passed by `var`. Two, the parameters to the second call to `senior` are swapped compared to the first call. After the first call, the value of `x` is changed to 3; after the second call, the value of `y` becomes -5.

 $x = 3$
 $y = -5$

2. The conversion to infix is as follows (an expression is boxed after it has been converted):

 \[
 \frac{A + B}{C} + \frac{A D}{A D} + B + \frac{A + B}{C} A D + B
 \]

 Now, substitute the value of the variables and evaluate:

 \[
 \left(\frac{A + B}{C} \right) A D + B = \frac{8 + 6}{7} \cdot 8 \cdot 2 + 6 = 2 \cdot 8 + 6 = 38.
 \]

3. The evaluation is as follows; an expression is boxed after it has been evaluated:

 $2 \ 3 \ 4 \ 5 \ 8 \ 12 \ 6 \ 3$
 $6 \ 20 \ 4 \ 3$
 $2 \ 12$

4. Remember that a stack is “last-in, first-out.” That is, the most recent item pushed will be the next one removed. Thus, the items popped are O, S, 0, N, U, and X in this order. The stack contains two elements, H at the bottom, and T above that.

5. The three nodes with only 1 child are the two L’s and the K. Here’s what the resulting tree looks like: